914 research outputs found

    Large-scale Synthesis and Functional Elements for the Antimicrobial Activity of Defensins

    Get PDF
    Human neutrophil defensins, and their analogues incorporating anionic, hydrophobic or cationic residues at the N- and C-termini, were synthesized by solid-phase procedures. The synthetic defensins were examined for their microbicidal activity against Candida albicans, two Gram-negative bacteria (Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis) and two Gram-positive bacteria (Streptococcus gordonii and Streptococcus mutans). The human neutrophil peptide 1 (HNP1) and HNP2 were found to be potent candidacidal agents. HNP3, which differs by one amino acid at the N-terminus of its sequence, was totally inactive. The Gram-negative bacteria A. actinomycetemcomitans and P. gingivalis and the Gram-positive bacteria S. gordonii and S. mutans were insensitive to human defensins. However, the insertion of two basic residues, such as arginine, at both the N-terminus and the C-terminus of HNP2 significantly enhanced antifungal and antibacterial activity. The addition of anionic residues, such as aspartic acid, at the N- and C-termini rendered the molecule totally inactive. The presence of two hydrophobic amino acids, such as valine, at the N-terminus of HNP2 and of two basic arginine residues at its C-terminus resulted in molecules that were optimally active against these oral pathogens. The results suggest that the N- and C-terminal residues in defensin peptides are the crucial functional elements that determine their microbicidal potency. The three-dimensional structure of all defensins constitutes the same amphiphilic beta-sheet structure, with the polar face formed by the N- and C-terminal residues playing an important role in defining microbicidal potency and the antimicrobial spectrum. The enhanced microbicidal activity observed for defensin peptides with two basic residues at both the N- and C-termini could be due to optimization of the amphiphilicity of the structure, which could facilitate specific interactions with the microbial membranes

    Optimal fleet assignment in inland container logistics

    Get PDF

    Photoproduction of iodine with nanoparticulate semiconductors and insulators

    Get PDF
    The crystal structures of different forms of TiO2 and those of BaTiO3, ZnO, SnO2, WO3, CuO, Fe2O3, Fe3O4, ZrO2 and Al2O3 nanoparticles have been deduced by powder X-ray diffraction. Their optical edges have been obtained by UV-visible diffuse reflectance spectra. The photocatalytic activities of these oxides and also those of SiO2 and SiO2 porous to oxidize iodide ion have been determined and compared. The relationships between the photocatalytic activities of the studied oxides and the illumination time, wavelength of illumination, concentration of iodide ion, airflow rate, photon flux, pH, etc., have been obtained. Use of acetonitrile as medium favors the photogeneration of iodine

    Crowd-based accountability: examining how social media commentary reconfigures organizational accountability

    Get PDF
    Organizational accountability is considered critical to organizations' sustained performance and survival. Prior research examines the structural and rhetorical responses that organizations use to manage accountability pressures from different constituents. With the emergence of social media, accountability pressures shift from the relatively clear and well-specified demands of identifiable stakeholders to the unclear and unspecified concerns of a pseudonymous crowd. This is further exacerbated by the public visibility of social media, materializing as a stream of online commentary for a distributed audience. In such conditions, the established structural and rhetorical responses of organizations become less effective for addressing accountability pressures. We conducted a multisite comparative study to examine how organizations in two service sectors (emergency response and hospitality) respond to accountability pressures manifesting as social media commentary on two platforms (Twitter and TripAdvisor). We find organizations responding online to social media commentary while also enacting changes to their practices that recalibrate risk, redeploy resources, and redefine service. These changes produce a diffractive reactivity that reconfigures the meanings, activities, relations, and outcomes of service work as well as the boundaries of organizational accountability. We synthesize these findings in a model of crowd-based accountability and discuss the contributions of this study to research on accountability and organizing in the social media era

    Biodesalination: an emerging technology for targeted removal of Na+and Cl−from seawater by cyanobacteria

    Get PDF
    Although desalination by membrane processes is a possible solution to the problem of freshwater supply, related cost and energy demands prohibit its use on a global scale. Hence, there is an emerging necessity for alternative, energy and cost-efficient methods for water desalination. Cyanobacteria are oxygen-producing, photosynthetic bacteria that actively grow in vast blooms both in fresh and seawater bodies. Moreover, cyanobacteria can grow with minimal nutrient requirements and under natural sunlight. Taking these observations together, a consortium of five British Universities was formed to test the principle of using cyanobacteria as ion exchangers, for the specific removal of Na+ and Cl− from seawater. This project consisted of the isolation and characterisation of candidate strains, with central focus on their potential to be osmotically and ionically adaptable. The selection panel resulted in the identification of two Euryhaline strains, one of freshwater (Synechocystis sp. Strain PCC 6803) and one of marine origin (Synechococcus sp. Strain PCC 7002) (Robert Gordon University, Aberdeen). Other work packages were as follows. Genetic manipulations potentially allowed for the expression of a light-driven, Cl−-selective pump in both strains, therefore, enhancing the bioaccumulation of specific ions within the cell (University of Glasgow). Characterisation of surface properties under different salinities (University of Sheffield), ensured that cell–liquid separation efficiency would be maximised post-treatment, as well as monitoring the secretion of mucopolysaccharides in the medium during cell growth. Work at Newcastle University is focused on the social acceptance of this scenario, together with an assessment of the potential risks through the generation and application of a Hazard Analysis and Critical Control Points plan. Finally, researchers in Imperial College (London) designed the process, from biomass production to water treatment and generation of a model photobioreactor. This multimodal approach has produced promising first results, and further optimisation is expected to result in mass scaling of this process

    Adapting the algal microbiome for growth on domestic landfill leachate

    Get PDF
    We aimed to improve algal growth rate on leachate by optimising the algal microbiome. An algal-bacterial consortium was enriched from landfill leachate and subjected to 24 months of adaptive laboratory evolution, increasing the growth rate of the dominant algal strain, Chlorella vulgaris, almost three-fold to 0.2 d^−1. A dramatic reduction in nitrate production suggested a shift in biological utilisation of ammoniacal-N, supported by molecular 16S rRNA taxonomic analyses, where Nitrosomonas numbers were not detected in the adapted consortium. A PICRUSt approach predicted metagenomic functional content and revealed a high number of sequences belonging to bioremediation pathways, including degradation of aromatic compounds, benzoate and naphthalene, as well as pathways known to be involved in algal-bacterial symbiosis. This study enhances our understanding of beneficial mechanisms in algal-bacterial associations in complex effluents, and ultimately enables the bottom-up design of optimised algal microbiomes for exploitation within industry

    Potential Applications of Infrared and Raman Spectromicroscopy for Agricultural Biomass

    Get PDF
    The low bulk density agricultural biomass should be processed and densified making it suitable for biorefineries. However, many agricultural biomass (lignocellulosic) especially those from straw and stover results in poorly formed pellets or compacts that are more often dusty, difficult to handle and costly to manufacture. The binding characteristics of biomass can be enhanced by modifying the structure of lignocellulose matrix (cellulose-hemicellulose-lignin) by different pre-processing and pre-treatment methods. However, it is not well understood as to how various pre-processing and pre-treatment methods affect the lignocellulosic matrix at the molecular level. Therefore, it is essential to determine chemical composition of agricultural biomass and the distribution of lignin relative to cellulose and hemicellulose before and after application of various treatment methods and after densification process. In this paper, the structural characteristics of lignocellulosic plant biomass and applications of Infrared (IR) and Raman spectromicroscopy methods are reviewed. The IR and Raman methods have good potential to determine the structural characteristics and distribution of chemical components in lignocellulosic biomass. Both methods have their own advantages and drawbacks, and should be used as complementary techniques

    Navigating drug repurposing for Chagas disease: advances, challenges, and opportunities

    Get PDF
    Chagas disease is a vector-borne illness caused by the protozoan parasite Trypanosoma cruzi (T. cruzi). It poses a significant public health burden, particularly in the poorest regions of Latin America. Currently, there is no available vaccine, and chemotherapy has been the traditional treatment for Chagas disease. However, the treatment options are limited to just two outdated medicines, nifurtimox and benznidazole, which have serious side effects and low efficacy, especially during the chronic phase of the disease. Collectively, this has led the World Health Organization to classify it as a neglected disease. To address this problem, new drug regimens are urgently needed. Drug repurposing, which involves the use of existing drugs already approved for the treatment of other diseases, represents an increasingly important option. This approach offers potential cost reduction in new drug discovery processes and can address pharmaceutical bottlenecks in the development of drugs for Chagas disease. In this review, we discuss the state-of-the-art of drug repurposing approaches, including combination therapy with existing drugs, to overcome the formidable challenges associated with treating Chagas disease. Organized by original therapeutic area, we describe significant recent advances, as well as the challenges in this field. In particular, we identify candidates that exhibit potential for heightened efficacy and reduced toxicity profiles with the ultimate objective of accelerating the development of new, safe, and effective treatments for Chagas disease
    • …
    corecore